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Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder
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The wall effects on the axisymmetric rise and deformation of an initially spherical gas bubble released from
rest in a liquid-filled, finite circular cylinder are numerically investigated. The bulk and gas phases are con-
sidered incompressible and immiscible. The bubble motion and deformation are characterized by the Morton
number (Mo), E6tvos number (Eo), Reynolds number (Re), Weber number (We), density ratio, viscosity ratio,
the ratios of the cylinder height and the cylinder radius to the diameter of the initially spherical bubble (H"
=H/d,, R"=R/d,). Bubble rise in liquids described by Eo and Mo combinations ranging from (1,0.01) to
(277.5,0.092), as appropriate to various terminal state Reynolds numbers (Re;) and shapes have been studied.
The range of terminal state Reynolds numbers includes 0.02 <<Re;<<70. Bubble shapes at terminal states vary
from spherical to intermediate spherical-cap—skirted. The numerical procedure employs a front tracking finite
difference method coupled with a level contour reconstruction of the front. This procedure ensures a smooth
distribution of the front points and conserves the bubble volume. For the wide range of Eo and Mo examined,
bubble motion in cylinders of height H*=8 and R* =3, is noted to correspond to the rise in an infinite medium,
both in terms of Reynolds number and shape at terminal state. In a thin cylindrical vessel (small R"), the
motion of the bubble is retarded due to increased total drag and the bubble achieves terminal conditions within
a short distance from release. The wake effects on bubble rise are reduced, and elongated bubbles may occur
at appropriate conditions. For a fixed volume of the bubble, increasing the cylinder radius may result in the
formation of well-defined rear recirculatory wakes that are associated with lateral bulging and skirt formation.
The paper includes figures of bubble shape regimes for various values of R*, Eo, Mo, and Re;. Our predictions

agree with existing results reported in the literature.
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I. INTRODUCTION

The dynamics of gaseous-bubble motion in a viscous lig-
uid medium has been studied over a number of years due to
its importance in several areas of science, engineering, and
technology. There is vast literature on the prediction of
bubble terminal velocity, shape, and drag coefficient in such
circumstances. A number of monographs and papers on this
subject are available (see, for example, [1-10]). The study
presented in this paper is motivated by applications in health
sciences. In health sciences, gas-bubble motion in a viscous
liquid is also of relevance in the study of gas embolism and
decompression sickness. In this context, bubble motion in an
arterial blood vessel has been experimentally and numeri-
cally investigated by a number of researchers [11-14]. How-
ever, the effects of buoyancy or the effects of high surface
tension, high density, and high viscosity ratios that are more
characteristic of gas-bubble motion in liquids have not been
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fully explored. Furthermore, in gas embolism, the bubble
sizes encountered are frequently of almost the same size as
the vessel (occluding bubble). Analysis of bubble dynamics
in such a situation would require the examination of wall
effects in a significant way. In this paper, we focus on cylin-
drical wall effects on a buoyant bubble axisymmetrically ris-
ing in a fluid-filled finite cylinder. Nearly occluding bubbles
are also studied.

The effect of radial wall location on the rate of rise of a
single air bubble in four different quiescent liquids and dif-
ferent sized containers has been experimentally investigated
in [15]. Low Mo fluids ranging from O(107%) to O(107'") are
considered. Three different bubble regimes, namely, spheri-
cal, ellipsoidal (both stable and unstable), and spherical cap
have been examined. The tube diameters and initial bubble
radii are in the ranges 2.09—15 cm and 0.1-1.2 cm, respec-
tively. A correlation has been proposed for the bubble termi-
nal rise velocity as functions of the bubble to tube diameter
ratio and an empirical constant. The constant is given graphi-
cally as a function of tube diameter and the surface tension
of the liquid used. Very low Mo with small bubbles and very
high Re preclude comparison of their results with those of
the present study. Harmathy [16] has proposed correlations
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for the wall effects on the terminal velocities of large bubbles
and drops for Re=500. Coutanceau and Thizon [17] have
investigated the wall effects in the creeping flow regime for
bubble rise along the axis of a vertical circular tube filled
with a highly viscous liquid using both theoretical and ex-
perimental procedures. They have concluded that the termi-
nal speed of a spherical bubble is affected by the wall effect
much sooner than its shape. Wall effects are shown to be
profound under such circumstances. Our predictions are in
accord with their reported results. Krishna er al. [18] have
experimentally investigated the rise velocities of bubbles in
the size range of 3—80 mm in cylindrical columns of varying
diameters, and have observed increased drag and hence sig-
nificant wall effects on bubbles moving in smaller diameter
columns. We have favorably compared our predictions with
their results.

In [19], the rise and deformation of a gas bubble in an
otherwise stationary liquid contained in a closed, right verti-
cal cylinder has been investigated using a modified volume-
of-fluid (VOF) method. Bubble deformation, cusp formation,
breakup and joining have been identified and discussed. Both
two- and three-dimensional formulations have been exam-
ined. The various physical mechanisms associated with the
computational results have been discussed. The results are
shown to agree with experimental measurements, where
available. One of the validations for the numerical method
used in the present paper is based upon an excellent com-
parison between the result predicted here with that in [19] for
identical conditions.

While it may be concluded that the cylindrical wall of a
container tends to retard the motion, cause elongation of a
fluid particle in the axial direction, and suppress secondary
motion, there is insufficient experimental or numerical evi-
dence detailing these aspects for the rise of gas bubbles in
various liquids. In this numerical study, the effects of wall on
the shape and the fluid field around a bubble rising in a
liquid-filled finite cylinder are studied for various terminal
shape regimes that a bubble would attain if it were rising in
an infinite medium. Several numerical schemes for the study
of free-surface flows are available. These include front-
tracking or immersed-boundary [20-25], level set [26,27],
phase-field [28], volume-of-fluid [29-31], coupled level-set
and volume-of-fluid [32], immersed interface [33,34], ghost-
fluid [35] methods, and moving mesh interface tracking [36].
In all methods except [36], flow discontinuities are smoothed
and the surface tension force is distributed over a thin layer
near the interface to become a volume force. The Navier-
Stokes equation is then solved on a fixed Eulerian mesh. The
present numerical study is based on a front-tracking method
coupled with a level contour reconstruction procedure for
periodic redistribution of the front points and reconstruction
of a new front. In the front tracking method, an explicit back-
ground mesh of interconnected marker points is used to rep-
resent the interface. Such a Lagrangian representation of the
interface allows an accurate calculation of the surface tension
forces without the direct computation of the interface curva-
ture.

Our numerical simulations have revealed that radial loca-
tion of the cylindrical wall affects bubble rise velocities and
shapes in a very significant manner.
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FIG. 1. Geometry of an axisymmetric bubble in a cylindrical
tube.

II. MATHEMATICAL FORMULATION

The bubble motion is considered axisymmetric in (r,z)
coordinates. The equations of motion for an isothermal, in-
compressible two-phase flow can be expressed by a single
fluid continuum model as follows:

V-u=0, (1)

Ju
p(E+Vu-u):—Vp+V~,LL(VU+VTU)

+ f ornS(x —Xp)ds + pg.  (2)
S(1)

In the above, u is the fluid velocity, p is the dynamic pressure
(total pressure minus the hydrostatic head), p and w are the
density and viscosity of the medium, g is gravitational accel-
eration, s is the arclength measure on the interface, « is the
curvature of the interface, o is surface tension and is as-
sumed to be a constant, S(z) denotes the interface (time de-
pendent), n, denotes the unit normal vector on the interface
(pointing into the bulk fluid), x; denotes the position vector
on the interface, and 5(x—xf) stands for the & function that is
nonzero only when x=x,. The gas-liquid system studied here
is shown in Fig. 1. The cylinder is closed on all sides, and the
top wall is sufficiently far away from the point of release of
the bubble. In most of the computations, for a fixed height of
the cylinder, the cylindrical wall is placed at varying radii in
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order to study its effects on the motion and deformation of
the gas bubble. The spherical bubble of diameter d,, (radius
ro) is released from rest in a quiescent bulk fluid, and gravity
is assumed to act in the negative z direction. The initial con-
dition is

u(r,z,t=0)=0. (3)

The no-slip boundary conditions on the container walls are
described by

u(r,0,)=0 0=r=R, (4)
u(r,H,)=0, 0=r=R, (5)
u(R,z,1)=0, 0=z=H, (6)

where R is the radius, and H is the height of the cylindrical
container. From the assumption of axial symmetry,

u(0,z2,)=0, 0=z=H,

J

where u, v are the velocity components along the radial and
axial directions, respectively.

The relevant nondimensional parameters employed in this
study are, the Morton number (Mo), the E6tvos number (Eo),
the Reynolds number (Re) based on the instantaneous veloc-
ity of the bubble centroid U, the density ratio of the bulk
phase to the dispersed phase(p,/p,), and the viscosity ratio
(! py). The dimensionless numbers are defined by

U.d - p)gd? Hp,—
L EO:(pz P8 0 MO:gﬁ«/(m pg).

2
My o P
. _ pUrdy
A terminal Reynolds number, Re;= P Bond number,
a3 U3
Bo:%, and Weber number, We=" ;do, are defined to

compare our results with those in existing literature.

III. NUMERICAL METHODOLOGY

We now describe the numerical methodology employed
for completeness.

In the bubble rise problem, the ratios of the properties of
the two fluids across the interface (front) can be very large,
for example, of the order of 1000 for density, and 100 for
viscosity. Such sharp jumps in properties across the interface
of ideally zero thickness complicate the numerical simulation
due to instabilities. Also, the integration of the surface ten-
sion term in Eq. (2) introduces numerical difficulties if the
sharp discontinuities are not resolved. To alleviate these
problems, all the discontinuities in fluids’ properties are first
smoothed out across a finite thickness interface region, and
the thickness of this region is proportional to the mesh size
(diffused interface). Smoothing is achieved using a phase
indicator function I(r,z,t) (Heaviside function) whose value
varies smoothly from 1 in the continuous (bulk) phase to 0 in
the dispersed phase across the interface. The contour /=0.5
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denotes the position of the interface. I(r,z,t) is found by
solving a Poisson equation given by (see [20,21,25] for more
details)

V-VI(r,z,t)zV'f n5(x — x)dS. (8)

S(1)

The sharp & distribution in Eq. (8) is written as a product of
two one-dimensional & functions along the radial and axial
directions. The one-dimensional & function is numerically
approximated as follows ( see, [37]):

o1(d), ld| =1,
Sd)=4112-6,(d), 1<]d<2, 9)
0, |d| = 2.

and &,(d)= ﬁ@LSMM. Here, d denotes the distance from
the origin of the source. Equation (8) is efficiently solved for
the whole domain with appropriate boundary conditions us-
ing the HWSCRT code (cyclic reduction method) from FISH-
PACK software library [38]. In our problem, a symmetry
boundary condition Z—f=0 is used at r=0 and a Dirichlet
boundary condition with /=1 is used on all other boundaries.
The material properties, namely, density and viscosity, of the
single continuum fluid are then updated using the following
equations (see, [39]):

p(r.z,t) = pld(r,z,1) + p[1 = 1(r,z,1)], (10)
— P PG+ B2 12T, (11)
,(L(V,Z,t) M lu’g

The surface tension force, f,,, acting on a small segment
of the interface surface is given as follows (see, [31]):

B
fstzf Uandszo-(tA_tB)_erO'SAB’ (12)
A

where t is the tangent vector on the interface, e, is the unit
radial vector, A, B are the end points of the interface seg-
ment, and s,p is the length of the A-B segment. The calcu-
lated surface tension force on the marker points is then trans-
ferred to the fixed Eulerian cells [Eq. (2)] using a numerical
approximation of the & function. However, with such a dis-
tribution interfacial numerical instabilities arise for flows in-
volving high surface tension forces coupled with large den-
sity and viscosity ratios. Such instabilities are a consequence
of the distribution of large surface force to cells with very
low liquid volume fractions. To avoid such instabilities, fol-
lowing [10], the surface tension force on each interfacial
segment is distributed to the computational grid (i,j) in a
“density-weighted” manner as follows:

Ee pi,jfsteDi,j(X - Xm)

Ee piv.iDi,j(x X

Foijp= , (13)

where x=(iAr,jAz), X,,=(7,,,2,) is the midpoint of the in-
terfacial segment e, p; ; is the density at the given Eulerian
grid point, and D;; is

036308-3



MUKUNDAKRISHNAN et al.

Sr, /Ar—1)8(z, /Az—]
Dij(x - Xm) = (rm : l) (Zm L ]) . (14)
- 2mrArAz

The numerical approximation for each of the above one-
dimensional & function is given by Eq. (9).

The unsteady Navier-Stokes equations are discretized us-
ing a finite-difference-based variable density projection
method described in [40-43]. The velocity, density, and vis-
cosity are all located at cell centers. The lagged pressure
p" V2 is located at cell corners with the superscript n denot-
ing the time level. The time stepping procedure is based on
the Crank-Nicholson method.

Briefly, an intermediate velocity field is obtained using a
semi-implicit viscous procedure: the equation for the inter-
mediate velocity u” is given as

n+(1/2) u -—u _ n+(1/2) n-(1/2)
p A =—[(u-V)u] -Gp

D +D"
( )+th+—(l/2) + p”+(l/2)g,

(15)

where Gp represents the pressure gradient operator, D(u)
=V-u(Vu+V7Tu) represents the diffusion operator, and F,,
represents the discretized surface tension forces. A second-
order predictor-corrector method based on the unsplit Go-
dunov method [44] is used to evaluate the advective terms
—[(u-V)u]**"? and a standard second-order central finite
difference is used to evaluate the diffusion terms D(u). The
resulting equations for the velocity components of u” [Eq.
(15)] are solved by a multigrid method based on red-black
Gauss-Siedel (RBGS) iterations [45]. Note that u” is not di-
vergence free in general. Hence, a projection method is in-
voked on u” to obtain the divergence-free velocity u"*!. The
projection step is given by the following equations:

un+1_un _P<u*_un>
Ar At )’

1 1 _ u -u"
FWGPMWZ) = i) Gp" 1+ (1 - P)< ) ’

At
(16)

where P represents the discretization of the projection opera-
tor. The details of the steps involved in discretization of in-
dividual terms in Egs. (15) and (16) for an axisymmetric case
and the corresponding time step restrictions for numerical
stability are given in [32].

With the updated Eulerian velocity field, the front
(marker) points are advected in a Lagrangian fashion as fol-
lows:

At

Xn+(1/2) =x"+V"
f f 2

(17)
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At
X;H =X;+(1/2) +V”+17, (18)

where V is bilinearly interpolated from the fluid velocities,
and x, denotes the position of the front point. Adding Egs.
(17) and (18), we get

Vn+1 +V"
L

Thus, Eq. (19) guarantees a second-order accurate scheme
for the advection equation of marker points.

In this study, both redistribution of the front points and
conservation of the bubble volume are simultaneously en-
forced using a level contour reconstruction procedure [20].
With a significantly deforming interface, a new distribution
of front points is needed. The /=0.5 contour which also rep-
resents the interface, is first reconstructed in each cell using a
simple linear interpolation of the contour value (a point-
slope calculation). The intersection points of these linear
contour segments with the background Eulerian cells now
form the new representation of the front. Also, the volume
fractions of the bubble and the bulk fluids in each of the cells
intersected by the contour segments can be directly com-
puted, and the total volume of the bubble estimated. How-
ever, in some simulations, /=0.5 contour may not always
result in bubble volume conservation. For such cases, an
optimum contour value, Iy, different from 0.5 is found
through iterations such that a desired level of accuracy for
the total bubble volume conservation (typically within 0.5%
of the initial volume of the bubble) is achieved. This is dis-
cussed in Sec. IV B. It is noted from our simulations that
(where applicable) is only slightly different from 0.5. The
interface reconstruction is done every few hundred time steps
or more depending on the circumstance or when the volume
loss of the bubble exceeds 0.5% of the original volume. This
serves as the criterion for interface reconstruction.

For all the numerical simulations presented, a uniform
nondimensional mesh size of 0.01 is employed in all simu-
lations in both the radial and axial directions.

IV. RESULTS AND DISCUSSION

First, we validate the numerical procedure employed.
Subsequently, we will investigate bubble rise in a range of
parameter space, and compare our results with existing ones,
where possible.

A. Validation of numerical predictions

In order to validate our numerical procedure, we first con-
sider bubble rise in containers with two representative com-
binations of widely varying Eo and Mo fluids. We investigate
conditions (cylinder sizes) where wall effects become negli-
gible. For such circumstances, the numerical predictions are
compared with experimental results obtained essentially for
“infinite medium” conditions (negligible bounding wall ef-
fects) given in [1].

Bubble rise in cylinders of various heights H*=6, 8, 10,
12, and for two different radii R*=3, 4 are considered. The
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TABLE 1. Case (a) Eo=1.0, Mo=0.01. Here, R"=R,/2rq, H"
=H/2r%, izT:z]/ZrO, z;=12/2r0, and U;=UT/(%Apr(2)g/,u,1). Also,
ReTz% and Rey.. is the experimental value.

R H Z 2 Uy Re;  Rep.
4.0 120 40 10.0 0.64 052 054
4.0 100 3.75 8.5 0.64 052 054
4.0 80 32 6.1 0.64 052 054
4.0 6.0 155 384 064 052 054
3.0 120 42 10.0 0.62 051 0.54
3.0 100 3.75 7.8 062 051 0.54
3.0 80 32 6.1 062 051 0.54
3.0 6.0 155 384 062 051 0.54

fluid property values are such that Eo=1.0, Mo=0.01 and
E0=97.1, M0o=0.971, and p,/p,=100, w;/ p,=100. Numeri-
cal computations for these parameters show that, for a given
cylinder size, the bubble during its ascent, achieves a “termi-
nal” velocity, U;: UT/(%Aprgg/ ,ul), a corresponding Rey-
nolds number, Re;, and a characteristic “terminal” shape.
These are attained at a particular height, z?=z/ dy, during its
rise. The terminal velocity and the characteristic shape ob-
tained at z}k are maintained up to a further height denoted by
Z;=Z/ dy, beyond which the effect of the top wall begins to
influence the bubble motion and shape. We denote z,—z by
Az". Numerically computed values for z; and z, and terminal
shapes are displayed in Tables I and II, and Figs. 2 and 3,
respectively. We denote the terminal Reynolds number ob-
served in experiments by Rer... In Table I, the numerically
predicted Re;=0.51 for R"=3 and various H and Re;
=0.52 for R"=4 and various H", are in very good agreement
with the experimental value of Rez,=0.54. In Table. II, pre-
dicted Re;=18.0 and this compares well with Re;,,=20. In
Figs. 2 and 3, the predicted spherical and the intermediate
spherical-cap—skirted shapes are the same as those observed
in experiments.

The distance over which the terminal velocities and
shapes are maintained, AZ", are noted to increase with in-
creasing values of H* beyond 6. From Tables I and II, we
note that for H"=6 and R =3, and for the two combinations
of Eo and Mo considered, the bubble motion results in the
attainment of terminal velocity values and shapes corre-
sponding to those in an infinite medium. However, in our

TABLE 1II. Case (b) Eo=97.1, Mo=0.971.

e * * *

R H Z 2 Uy Rer Rer
4.0 12.0 4.5 10.1 0.22 18.0 20
4.0 10.0 3.8 8.1 0.22 18.0 20
4.0 8.0 35 6.6 0.22 18.0 20
4.0 6.0 34 4.8 0.22 18.0 20
3.0 12.0 4.2 10.0 0.22 18.0 20
3.0 10.0 4.0 8.2 0.22 18.0 20
3.0 8.0 4.1 6.2 0.22 18.0 20
3.0 6.0 34 4.8 0.22 18.0 20
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r

FIG. 2. Characteristic spherical shape of the bubble at the at-
tainment of terminal velocity for Eo=1.0 and Mo=0.01. Here, H"
=8 and R"=3.

subsequent computations, we will employ a fixed height of
H"=8 and vary R" to evaluate cylindrical wall effects. This
choice is based on our numerical experimentations from
which we have concluded that for the large range of Rey-
nolds numbers investigated (0.03=<Re=70), and for the
wide range of Eo, Mo combinations studied [(1.0,0.01) to
(277.5,0.092)], a value of H =8 is most appropriate. This H"
provides an adequate Az" enabling us to examine the roles of
various forces at play in bubble ascension and deformation.
Clearly, for H =8 and R =3 infinite medium conditions pre-
vail within Az".

In Fig. 4, the numerical results for bubble shapes and
positions are shown at various nondimensional times, 7
=t/\ry/g, for Eo=97.1, Mo=0.971, H*=8 and for various
radii R*=6, 4, 3, 2, and 1. The experimentally observed ter-
minal shape in an infinite medium for the Eo and the Mo
values is a spherical-cap—skirted bubble [1]. For Figs.
4(a)-4(c) with H'=8 and R" =3, the bubble rise from z? to
z;, essentially corresponds to that in an infinite medium. For
example, in Fig. 4(b), H'=8 and R"=4, and from Table II,
7,=3.5 and z,=6.6. The numerically predicted terminal
shape in this range is noted to be a spherical-cap—skirted
bubble, and this is in good agreement with experimental re-
sults for an infinite medium case. Beyond zz=6.6, the bubble
shape is noted to change as a consequence of the effects of
the top containing boundary. In Fig. 4(c), R"=3, the terminal
state at z>1:<=3.2, is a spherical-cap—skirted bubble. In Figs.

r

FIG. 3. Characteristic shape of an intermediate spherical-cap—
skirted bubble at the attainment of terminal velocity for Eo=97.1
and Mo=0.971. Here, H"=8 and R"=3.
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4(d) and 4(e), where R" <3, the cylindrical wall effects are
noted to increasingly influence bubble motion and shape.
Upon the attainment of terminal velocity, the shape of the
bubble in Fig. 4(d), with H"=8, R*=2, is slightly different
from those in Figs. 4(a)-4(c), but for the case of Fig. 4(e),
with H'=8, R"=1, the wall effects are severe. The terminal
dimpled ellipsoid shape at R*=1 is distinctly different from
the experimental results in an infinite medium. The instanta-
neous Reynolds numbers, for all the motions displayed in
Figs. 4(a)-4(e), are shown in Fig. 5. Curves (a), (b), (¢), (d),
and (e) refer to the corresponding cases in Fig. 4. As would
be expected, the terminal Reynolds numbers Re;~ 18 for
cases (a), (b), and (c) are not different from each other be-
cause of negligible wall effect. But the terminal Re; values
for the cases (d) and (e) are lower [Re;=16.5 for case (d),
and Re;=12 for case (e)]. The reduction in Re; is directly
attributable to increased total drag on the bubble due to the
proximity of the cylindrical wall, and this feature will be
explored in detail in a later section. We also note that bubbles
achieve terminal state in shorter distances when R” is re-
duced and the wall effects are pronounced. The terminal
shapes are very different from those in an infinite medium.

As a second validation test, we evaluate terminal bubble
shape at Eo=158.4 (B0=39.6), Mo=0.065, u;/ u,=100, and
pi/ p,=1000, with H"=8 and R"=3, and compare our predic-

20

151

0 I
5 e 10
T= t(g/ro)
FIG. 5. Instantaneous Reynolds number corresponding to vari-
ous cases given in Fig. 4.

N

tions with the experimental results of Hnat and Buckmaster
obtained using a cylindrical tank of 150 cm diameter and
150 cm height with a bubble volume of 0.94 ml for the same
Eo and Mo [see, Fig. 1(a) in [46]]. The terminal bubble
shape and the recirculatory wake structure obtained from nu-
merical simulation are shown on the left-hand frame and
compared with the experimental results shown on the right-
hand frame in Fig. 6. Good agreement in the terminal shape
and flow field are noted, although the value of Rey,, as ob-
tained in the experiment was 19.6 and that obtained numeri-
cally is 18.8. This is because of the fact that confinement
effects due to the wall, however small, are still present.
Complementary indications of this confinement effect with
larger domains for the same physical problem were also
noted in a recent study by Bonometti and Magnaudet [47].
We now consider a third validation test. The effects of the
lateral walls on the rise velocities of a gas bubble in cylin-
ders of various wall radii have been experimentally measured
by Krishna et al. [18]. The experiments were carried out in
seven cylindrical columns with different inside diameters
varying from 0.01-0.63 m and heights varying from 1-6 m.

FIG. 6. Comparison of numerically predicted terminal bubble
shape and wake structure with that of the experimental results given
in [46][Fig. 1(a)]. Here, Eo=158.4 (B0o=39.6) and Mo=0.065.
Left-hand frame, numerical prediction; right-hand frame, experi-
mental results (Reprinted with permission from [46]. Copyright
1976, American Institute of Physics).
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FIG. 7. Comparison of the numerical results of rise of air bubble
in the presence of lateral walls with that of experimental results
given in [18]. Here, Mo=2.6 X 10~ Eo=11, and 1.0=R"=<1.67.

The system studied was mostly air bubble in water and in
one case, it is air bubble in Tellus oil. The bubble diameters
were in the range of 3—79 mm. For air-water system, the
study corresponds to Mo = 2.6 X 107!, and Eo in the range
1.2<Eo0<850. In Fig. 7, numerically predicted terminal ve-
locities corresponding to Eo = 11 and Mo = 2.6 X 107! are
compared with those observed in the experiments. We
choose to display comparison in the range 1.0=R"=1.67,
for illustration. In Fig. 7, the ordinate is a dimensionless
velocity that is the ratio of bubble terminal velocity Uy to
Uy. Uy is the velocity predicted by Mendelson equation
[48] and is given by U= \/2—Z+%‘i(). The predicted results
Pido

compare with experimental values to within 10% noting that
the experiments reported in [18] are carried out in very long
open cylinders.

These various comparisons serve to validate our numeri-
cal procedure.

B. Volume conservation of bubble phase

Volume conservation of bubble phase in numerical simu-
lations of two-phase flow is a very important requirement.
Volume gain or loss may affect the shape of the interface and
also the dynamics of the problem. The details as to how we
ensure bubble volume conservation in our numerical model
has been described in Sec. III. Here, we demonstrate the
satisfaction of this requirement by an illustrative simulation.
Figure 8 shows a comparison between bubble shapes for
identical release conditions and subsequent nondimensional
times as computed without a bubble volume conservation
scheme [Fig. 8(a)], and with the volume conservation
scheme [Fig. 8(b)], incorporated into the numerical proce-
dure. The nondimensional parameters for this simulation are
! pg=pyl p;=80, Mo=1.2 1073, and Eo=200. These pa-
rameters are the same as those used in Fig. 10 of Ref. [19]
and case (b). Bubble shapes and positions are displayed for
=0, 1, 2, and 2.24. Predictions in Fig. 8(b) are in excellent
agreement with the predictions in [19]. As time progresses,
in Fig. 8(a), the lower surface of the bubble approaches the
top surface at a faster rate than in the corresponding one
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FIG. 8. Bubble positions for 2t=2=80, Mo=1.2X 10", and
Eo0=200. (a) Without conservation ‘scheme, (b) with conservation
scheme. The nondimensional times of the bubble positions from the
bottom are 7=0, 1, 2, 2.24, respectively.

shown in Fig. 8(b). This is a consequence of an over predic-
tion of the liquid jet strength by the scheme that does not
conserve bubble volume. The toroidal vortex strength on the
bottom surface of the bubble is over predicted. The scheme
lacking accurate volume conservation will therefore incor-
rectly predict the penetration of the upper surface of the
bubble by the lower surface leading to bubble breakup at an
earlier time. Since bubble breakup introduces new dynamics,
it is important to know its occurrence in precise terms. This
emphasizes the need for an accurate volume conservation
procedure in numerical schemes such as the one employed
here.

In Fig. 9, as another test of accuracy of the bubble volume
conservation scheme, we display the relative error in the
bubble volume prediction for the case where Eo=97.1 and
Mo0=0.971, and H*=8 and R"=3. As the bubble ascends, the
instantaneous bubble volumes at selected time intervals are
calculated. This volume is compared with the initial bubble
volume. The bubble volume loss is then calculated using the
following formula: bubble volume error = [(instantaneous
volume-initial volume)/initial volume] X 100. In Fig. 9, we
display the error as a function of time, 7, at eight different

0.5
X 0.25¢ * B
S
m
[0}
S o ]
2 *
2 *
§ *
@ -025f * 1
* *
-0.5 ‘ ‘ ‘
5 10 15 20
r:t(g/ro)

FIG. 9. Bubble volume conservation with the level-contour re-
construction procedure. Eo=97.1, M0o=0.971.
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TABLE III. Various regimes chosen for numerical simulations. Rer., and the terminal shape descriptions

from [1] are displayed.

Regime Terminal shape in infinite medium Eo Mo logig Mo Rez.
(a) Spherical 20 10 1.0 1.5
(b) Ellipsoidal 10 0.01 -2.0 11.0
(c) Dimple ellipsoidal cap 185.5 330 2.52 55
(d) Spherical cap 54.4 0.0026 -2.58 60.0
(e) Intermediate spherical-cap—skirted 277.5 0.092 -1.04 80.0

values, including at 7=0. The instantaneous volume of the
rising bubble is noted to be conserved very well within 0.5%
of the original volume.

C. Detailed study of cylindrical wall effects

In this section, the effects of cylindrical wall of the finite
cylinder on the terminal rise velocities and characteristic
shapes of a gas bubble are evaluated for a fixed H =8, and
for R* values of 2, 1, 0.75, 0.6, and 0.55. The values of
Eo-Mo combinations for these simulations are so chosen that
they correspond to five different terminal shapes of a gas-
bubble rising in an infinite medium [1]. The terminal shapes
chosen are spherical, ellipsoidal, dimpled-ellipsoidal cap,
spherical cap, and intermediate spherical-cap—skirted. The
values of Eo-Mo combinations and the descriptions of corre-
sponding terminal bubble shapes in infinite media are shown
in Table III.

1. Terminal bubble shapes

A bubble, immediately after release, rises up rapidly due
to buoyancy force, and a fluid jet forms at the bottom of the
bubble. The jet tends to push the lower surface of the bubble
up towards the top surface. The jet formation is a conse-
quence of mass conservation in the liquid medium. The lig-
uid jet initially accelerates accompanied by a curving of the
lower surface of the bubble. There will be an increased sur-
face tension force due to increased curvature, and an in-
creased viscous drag, both opposing the effect of the jet. As
a consequence, the bubble will start to decelerate until a
force equilibrium between inertia, viscous, and surface ten-

FIG. 10. Schematic of the lengths used in defining the deforma-
tion factor for the bubble. A representative terminal bubble shape is
shown.

sion forces is attained where upon the bubble will attain a
terminal shape and translate at a constant terminal velocity.
For cases where viscous forces in the bulk fluid are dominant
(for example, at low Reynolds number), a clean bubble in an
infinite medium will remain spherical independent of the
magnitude of the surface tension force. However, for bubble
motion in a finite cylindrical vessel, slight deformation oc-
curs even at low Reynolds number and this can be attributed
to wall effects.

In order to quantitatively characterize deformation, a de-
formation parameter is defined here as the ratio of the maxi-
mum length of the bubble along the axial (z—) direction,
L ;a1 to that of 2 times the maximum length along the radial
direction, Li,qi,, When the bubble attains its terminal shape
(at z;) (see, Fig. 10). For purposes of comparison, a second
deformation factor called the “geometric deformation factor”
is also evaluated. This factor denotes the deformation of a
spherical bubble that remains stagnant in a cylindrical tube
of given radius, R. For R*=0.5, the geometric deformation
factor of a sphere is equal to 1 (remains undeformed) and for
R"<0.5, it attains the shape of a cylindrical bubble with
hemispherical end caps of radii equal to cylinder radius in
accord with its volume conservation.

The numerically evaluated bubble deformation factors,
Loyiat! (2Leagiar)» as functions of R”, for various regimes (see
Table IIT) are shown in Fig. 11 along with the deformation
factor for a stagnant bubble (dashed-dotted line).

For case (a), Eo, Mo=20, 10, Re;,.=1.5, and the terminal
shape in an infinite medium is spherical. For R"=2, the ter-

3.5 ‘
H v Casea
3l 4 Caseb i
H o Casec
' * Cased
250 o Casee |
= Voo Stagnant Bubble
g 2 ]
- '
(Y '
TE1.5¢
_IN
1 -
0.5-
0 0.5 1 1.5 2
R

FIG. 11. Deformation factor for bubbles in different regimes.
Legend details for cases (a)—(e) are given in Table IIl. H* =8, for all
cases.
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FIG. 12. Values of Rey for various dimensionless wall distances.
See Table III for legend details.

minal shape is nearly spherical, and Re; is 1.4 and We
=1.3 (see, Figs. 11-13). The viscous, inertial, and surface
tension forces are of the same order [~O(1)]. Deformation
by inertial forces is resisted both by viscous and surface ten-
sion forces. In the range, R"=2 to R"=0.55, the deformation
continues to be small (Fig. 12) with a slight elongation oc-
curring in the axial direction. The deformation factor is es-
sentially constant (Fig. 11) and is slightly above one. The
terminal Reynolds number decreases from 1.4 at R*=2 to
0.68 at R"=1 to 0.03 at R"=0.55, the majority of decrease
occurring for R*< 1. For R <1, the drag due to wall effects
are severe. At low Reynolds number, spherical bubbles in
closed cylindrical containers experience slight deformation
as a result of wall effects. However, the deformation is only
slight even with increased radial wall effects. These observa-
tions are in accord with the results reported in [17].

For case (b), Eo, Mo=10, 0.01, Re;,=11.0, and the ter-
minal shape in an infinite medium is ellipsoidal. For R*=2,
the terminal shape continues to be ellipsoidal, and Re; is 9.8
and We=3.0 (see, Figs. 11-13). Inertial forces and surface
tension forces are of the same order and are higher than
viscous forces. In the front, surface tension forces act to
maintain a spherical shape, whereas inertial (dynamic) forces
act to flatten, and hydrostatic forces act to elongate. The final
ellipsoidal shape of the particle is determined by a balance of
these three effects. For R*<2, the bubble becomes nearly
spherical with increasing radial wall proximity, and at R
=0.55, assumes an elongated shape whose trailing end is
flatter while the leading end is sharper (Fig. 12). The axial
length of the bubble is increased. The deformation factor
increases with decreasing R” in a linear manner from R" =2
to R"=1. Subsequently, the increase in the deformation factor
occurs with a higher slope (Fig. 11). The curvature of the
leading end is higher compared to that at the rear. Re; de-
creases from 9.8 at R*=2 to 5.8 at R"=1. For R" <1, the
Reynolds number drastically decreases from a value of 5.8 at
R"=1 to 0.39 at R"=0.55 (Fig. 12). From Fig. 13, the We
decreases from 3 to 0.005. This is because, for R* <1, the
wall effects increases the drag and significantly slows down
the speed of the bubble.

For case (c), Eo, Mo=185.5, 330, Re;,=5.5, and the ter-
minal shape in an infinite medium is a dimpled ellipsoidal
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FIG. 13. Re~We space spanned by the bubbles in various re-
gimes. The values of Re; and We decrease as the wall proximity
increases for each case. See Table III for legend details.

cap bubble. For R*=2, the terminal shape continues to be
dimpled ellipsoidal cap, and Re;=4.9 and We=32 (see, Figs.
11-13). While viscous forces are lower than inertia, surface
tension forces are even lower. A liquid jet of reduced strength
[compared to that in case (b)] is still strong enough to pro-
duce an indentation in the rear of the bubble. At R*=1, the
bubble is nearly spherical with much reduced indentation at
the rear. Here, Re;=3.3 and We=14.7. A reduced role of
inertia and an increased role of viscous and surface tension
forces result in the decrease in the extent of indentation. With
increasing wall proximity, for example, at R"=0.55, the
bubble assumes an elongated cylindrical shape with no in-
dentation at the rear. The curvature is slightly smaller on the
lower surface than at the top (Fig. 12). The Rey=1.15 and
We=1.75. Viscous, inertial, and surface tension forces are of
the same order. Progressive change in the curvature at the
rear of the drop from negative (concave at R"=2) to positive
(convex at R"=0.55) is ascribable to the progressive domi-
nance of surface tension forces as evident from the decrease
in We. The decrease in Re; from R"=1 to R*=0.55 occurs at
a lower rate compared to cases (a) and (b). This can be
attributed to the larger change in shape and form drag. The
deformation factor has a significant change from R*=2 to
R"=1, followed by a dramatic increase for R* <1 (Fig. 11).
The latter change is akin to a geometric deformation (see
dashed-dotted lines in Fig. 11). The elongation of the bubble
in the axial direction is due to increased normal stresses.
For case (d), Eo, Mo=54.4, 0.0026, Re;,,=60.0, and the
terminal shape in an infinite medium is a spherical cap
bubble. For R"=2, the terminal shape continues to be a
spherical cap, however, with a small indentation in the rear.
Here, Re;=53.5, We=20 (see, Figs. 11-13). The posterior
portion of the bubble is relatively flat. At the rim, in the areas
of slightly increased curvature, higher surface tension forces
accompanied with increased viscous stresses resist further
deformation. Thus, a critical balance between inertial, sur-
face tension, and viscous forces is reached resulting in a
terminal spherical cap shape with a slight dimple. At R* =1,
Re;=37.8 and We=10. Surface tension forces are higher.
The lower surface of the bubble is flatter with a much re-
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duced indentation and with a slight elongation in the axial
direction. The almost spherical cap makes a slow transition
to a bullet shaped bubble at R“=0.55 (Re;=16.5 and We
=1.9), with a near zero curvature at the bottom (Fig. 12).
This is a result of high inertia and surface tension forces. The
decrease in Rey from R* =1 to R"=0.55 occurs at a lower rate
compared to cases (a), (b), and (c). This is again due to larger
deformation. As in case (c), the deformation factor has a
significant change from R*=2 to R"=1, followed by a dra-
matic increase for R*<<1 (Fig. 11). This is also akin to a
geometric deformation.

For case (e), Eo, M0o=277.5, 0.092, Re;,=80.0, and the
terminal shape in an infinite medium is an intermediate
spherical-cap—skirted bubble. Viscous forces acting at the
rim of the slightly dimpled bubble are strong enough to over-
come interfacial tension forces. This results in a skirt. For
R'=2, Re;=68.7, We=86.1, and the terminal shape contin-
ues to be an intermediate spherical-cap—skirt, although the
skirting is very slight (see, Figs. 11-13). At R"=1, Rey
=52.5 and We=50. A liquid jet of reduced strength (com-
pared to that at R*=2) together with the normal stresses in-
troduced by the proximity of walls produce an indentation in
the rear of the bubble. This results in a dimpled ellipsoidal
shape. At R*=0.55, Re;=29.4, We=15.75, and the shape is a
bullet shaped cylindrical bubble with a dimpled rear. Surface
tension and viscous forces remain lower than inertial forces.
With close proximity of the wall, the normal stresses result in
higher deformation (Fig. 12). The decrease in Re; from R”
=1 to R"=0.55 occurs at a lower rate compared to all the
previous cases. This is again due to larger shape change and
corresponding form drag change. The deformation factor as
seen from Fig. 11 is akin to a geometric deformation.

The above comprehensive discussions show that wall ef-
fects on bubble motion in finite cylinders are complicated
and the property values exert important influence.

2. Terminal velocity correlations

In Fig. 14, the variations of dimensionless terminal ve-
locities (Uy/ Uz ) for bubbles in various regimes (see, Table
IIT) are shown as functions of R*. For R"=2, the terminal
velocities are ~90% of the infinite medium velocities for all
cases. This demonstrates the beginning of wall influence. For
cases (a) and (b) and R"=0.55, the slightly elongated bubble
and the bubble with a flatter trailing end nearly occlude the
flow. For these cases, the ratio U/ UTOC =~(.02,0.035, respec-
tively. The deformation factors for these cases, as discussed
earlier, are small. Correspondingly, at R*=0.55, the deforma-
tion factors are higher for cases (c), (d), and (e), although, for
case (d), the blockage is only slightly lower than for case (b).
The ratio Uy/ Uy are =0.2,0.28, and 0.37, respectively. For
the high Eo and high Re systems, corresponding to cases (c),
(d), and (e) (see, Table III), the numerically predicted termi-
nal velocities agree well up to R"=1.5 with the correlation
relation given in [1] (Chap. 9, Eq. 9-36). In their notation,
Ur/Ur =1.13¢7, A:?. For R*< 1.5, the deviation from
the correlation predictions for these cases increases with de-
creasing Re; [see, cases (c), (d), and (e) in Fig. 14].

3. Flow fields

In the earlier sections, wall proximity was noted to slow
down the bubble speed and significantly affect bubble defor-
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FIG. 14. Wall effects on the terminal velocity of the bubble in
different regimes. See Table III for legend details.

mation. In this section, we investigate the detailed nature of
the flow fields associated with the bubble motion for cases
(b) and (d) (Table III) to further understand the influence of
the proximity of the radial wall.

Figure 15 shows the velocity vectors and streamlines for
the case (b), for various R* values when the bubble has at-
tained its terminal state at zT. The flow features are shown
both in the laboratory reference frame and in a reference
frame moving with the bubble centroid. For case (b), Eo,

(A)

(8) ©) (D) (E)

*

r

FIG. 15. Velocity vectors and the streamlines for the ellipsoidal
bubble at terminal state: Mo=0.01, Eo=10.0. Upper figures are
velocity vectors in laboratory reference frame, and the lower ones
are streamlines in the frame of reference of the bubble centroid.
Here, (A) R*=2, (B) R*=1, (C) R"=0.75, (D) R*=0.6, (E) R"
=0.55.
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FIG. 16. Values of the drag coefficient Cp, for various dimen-
sionless wall distances. See Table III for legend details.

Mo=10, 0.01, Res,,=11.0, and the terminal shape in an infi-
nite medium is ellipsoidal. We choose to examine flow fields
for five different R* values of 2, 1, 0.75, 0.6, and 0.55. The
figures for the different R values are noted by Figs.
15(A)-15(E). The value of H" is fixed at 8 as before. With
increasing wall proximity, the bubble becomes nearly spheri-
cal at R"=1, experiences a slight elongation along the axial
direction at R*=0.75, followed by a further elongation along
the axial direction at R“=0.6, culminating as an elongated

w (B) © (D) (E)

FIG. 17. Velocity vectors and the streamlines for the intermedi-
ate spherical-cap—skirted bubble at the terminal state: Mo=2.6
X 1073, Eo=54.4. Upper figures are velocity vectors in laboratory
reference frame, and the lower ones are streamlines in the frame of
reference of the bubble centroid. Here, (A) R"=2, (B) R*=1, (C)
R*=0.75, (D) R"=0.6, (E) R"=0.55.
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FIG. 18. Nondimensional vorticity at the bubble surface at ter-
minal state for two different R* values: (a) R"=2 and (b) R"=0.55.
Here, Mo=2.6 X 1073, Eo=54.4 and this corresponds to case (d) in
Table III. Dashed—dotted line denotes zero vorticity.

bubble whose trailing end is flatter while the leading end is
sharper at R*=0.55. The corresponding terminal Re; are 9.8,
5.8,2.9,0.75, and 0.4. The reduction in Re; is directly due to
reduction in Uywhich is caused by increased drag. The total
drag coefficient, Cp, increases with decreasing R" as would
be expected, and as seen in Fig. 16, its value changes from
4.4 at R"=2 to 2720 at R"=0.55. The bubble interior experi-
ences a vortical motion due to the slip of the liquid with
respect to the bubble surface which then entrains the gas
inside the bubble. Since the viscosity ratio of the bubble to
the bulk fluid is almost zero (=0.01), the vortex inside the
bubble resembles the Hill vortex [49]. With increasing prox-
imity of the wall, the internal vortex strength diminishes,
vortical loops are longer to accommodate the shape deforma-
tion. There is no flow separation either on the inside or on
the outside of the bubble. It is evident from Figs.
15(A)-15(E) that flow is experiencing increasing blockage.
Also evident from the velocity vector plots is the reduced jet
strength in the rear of the bubble as the radial wall is brought
closer.

Figure 17 shows the velocity vectors and streamlines for
the case (d), for various R* values when the bubble has at-
tained its terminal state at z,. The flow features are again
shown both in the laboratory reference frame and in a refer-
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FIG. 19. Dynamic pressure contours on the bubble surface at
terminal state for two different R* values: (a) R"=2 and (b) R
=0.55. Here, Mo=2.6 X 1073, Eo=54.4 and this corresponds to case
(d) in Table III.

ence frame moving with the bubble centroid. For case (d),
Eo, Mo=54.4, 0.0026, Re;.,=60.0, and the terminal shape in
an infinite medium is a spherical cap bubble. The figures for
the different R* values are indicated by Figs. 17(A)-17(E).
For R*=2, the terminal shape is a spherical cap, however,
with a slight indentation in the rear. At R*=1, the lower
surface of the bubble is flatter with a much reduced indenta-
tion and with a slight elongation in the axial direction. At
R"=0.75, the bubble is increasingly squeezed, the posterior
of the bubble becoming flatter. At R"=0.6 and 0.55, the
bubble deforms into a bullet shape with a flat bottom. The
corresponding terminal Re;’s are 53.5, 37.8, 28.8, 17.8, and
16.5. Evidently, the flow fields are in the high Reynolds
number regimes. At R*=2, the flow field is vigorous and is
accompanied by flow separation and recirculation at the rear.
The slip of the liquid with respect to the bubble surface in-
duces vigorous internal vortex motion, and a secondary in-
ternal vortex is noted as a result of flow reversal on the
surface of the bubble. The strength of the secondary vortex
motion is weaker. With increasing closeness of the radial
wall, at R"=1 and 0.75, the strength of the recirculating vor-
tices on the outside of the bubble becomes progressively
weaker, accompanied by reductions in recirculating wake
volumes. The secondary internal vortex motion is also get-
ting weaker, and at R"=0.75 is barely discernible. At R”
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FIG. 20. Cross-sectional plots of the nondimensional vorticity at
transverse cross-sectional planes located slightly below the lower
surface of the bubble at terminal states for two different R* values:
(a) R"=2 and (b) R"=0.55. Here, Mo=2.6 X 1073, Eo=54.4, and
this corresponds to the case (d) in Table III.

=0.6 and 0.55, with essentially flat lower boundaries, the
external recirculation and the secondary internal vortical mo-
tions are absent. However, the primary internal vortices are
well defined, vortical lines are stretched to accommodate de-
forming shapes. There is increased blockage of the flow. The
total drag coefficient, Cp, as seen in Fig. 16, increases with
decreasing R* as would be expected, and its value changes
from 3.7 at R"=2 to 38.4 at R"=0.55.

In Fig. 18, the nondimensional bubble surface vorticity,
o =wdy/ Ur.,, where 0=V Xu, is plotted as a function of
arclength s along the bubble surface, s=0 at the front-
stagnation point and s=1 at the rear-stagnation point. The
results are presented for values of R"=2 and 0.55. For R*
=2, as the fluid flow negotiates the bubble surface, the vor-
ticity becomes increasingly negative, and at s= 0.65, vortic-
ity switches sign [see, Fig. 18(a)]. Beyond this point, there is
considerable accumulation of vorticity at the rear and this is
accompanied by vigorous recirculation resulting in an at-
tached eddy. The wall vorticity has negligible effect here.
With increasing wall proximity, however, the wall vorticity
and the surface vorticity interact. At R"=0.55, as seen from
Fig. 18(b), the point of separation is closer to the rear stag-
nation point, and the positive vorticity resulting in clockwise
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FIG. 21. Bubble shape regimes in the Eo - Re; space for various wall distances: (A) R*=2, (B) R"=1, (C) R"=0.75, (D) R*=0.6, (E)
R"=0.55. The Mo values for cases (a)—(e) are given as follows: (a) Mo=10, (b) Mo=0.01, (c) Mo=330, (d) Mo=0.0026, (¢) Mo=0.092.

recirculation is weaker. At this R”, the bubble shape is highly
deformed from that at R*=2. Evidently, there is very little
accumulation of vorticity and no evidence of recirculation.
From s=0.4 to 0.7, the vorticity profile shows a significant
influence of the presence of the wall.

In Figs. 19(a) and 19(b), the corresponding dimensionless
dynamic pressure variations on the bubble surface are dis-
played as a function of arclength, for R*=2,0.55, respec-
tively. Again, the arclength is measured from the front to the
rear stagnation point. The separation point denoting the onset
of wake recirculation in Figs. 19(a) corresponds to the point
where the surface gradient of pressure changes sign. In Fig.

19(b), there is a uniform increase in pressure from the front
to the rear indicating the absence of recirculation region at
the rear.

In Figs. 20(a) and 20(b), the nondimensional vorticity at a
transverse cross-section plane (normal to the direction of
bubble motion) is displayed as a function of r'=r/d,, for
R"=2, and 0.55. The transverse cross-sectional plane is lo-
cated slightly below the lower surface of the bubble. The
characteristics shown are for the corresponding terminal
states. The interaction between wall generated vorticity and
the bubble surface induced vorticity are minimal at R"=2
and are the highest at R"=0.55 for the cases considered here.
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In these figures, the region of negative vorticity denotes the
influence of the bubble. On the other hand, vorticity gener-
ated at the wall is regarded positive and regions of positive
vorticity denote the predominant influence of the cylinder
wall. The value of the negative vorticity and the region of
influence of the bubble are both higher for the case of R”
=2 [Fig. 20(a)] compared to the case of R"=0.55 [Fig.
20(b)]. The value of wall vorticity increases for decreasing
values of R”. This is because, as R* decreases, the downflow-
ing (entrained) fluid has less space to flow which increases
the wall shear stress and directly results in an increased level
of vorticity at the wall.

4. Bubble shape regimes for various wall proximities

In Figs. 21(A)-21(E), we display the shape regimes for
bubbles for R*=2, 1, 0.75, 0.6, and 0.55, H" =8 for the wide
range of Eo and Mo investigated. These plots which are
similar to the shape regime plot given in [1], provide a con-
venient tool for demonstrating the wide range of bubble be-
havior under various conditions of wall proximities.

V. CONCLUSIONS

We have described the buoyant axisymmetric rise of a
gaseous-bubble in a fluid-filled finite circular cylinder. The
motivation has been to examine the proximity of the effects
of the cylinder side wall on the bubble behavior. The results
have implications for understanding bubble occlusion in cy-
lindrical geometries. The problem has been solved by a hy-
brid procedure that involves front tracking method together
with a level contour reconstruction procedure. This hybrid
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scheme has been fine-tuned with a “density-weighted” sur-
face tension force distribution procedure. These eliminate in-
terfacial numerical instabilities for flows involving high sur-
face tension forces coupled with large density and viscosity
ratios.

The roles of governing parameters expressed in terms of
dimensionless quantities H*, R*, Re, We, Eo, Mo, Pl pgs and
/! ey on bubble behavior in a fluid-filled cylinder have been
clearly revealed by this numerical study. For the wide ranges
of Eo and Mo considered, results show that bubble behavior
for H'=8 and R"=3 resembles that in an unbounded (infi-
nite) fluid medium. For a fixed H* and for R* <3, wall ef-
fects become increasingly significant. Wall proximity in-
creases the total drag on the bubble leading to a slow down
of the motion and pronounced change in shape. Under cer-
tain conditions bubble deformation is such as to occlude the
flow. Under certain other conditions vigorous circulatory mo-
tions exist on the bubble interior and on the exterior. At
appropriate conditions secondary internal vortices may ap-
pear. The paper provides exhaustive information on bubble
deformation and includes maps of shape regimes.

In a future study, the effect of the proximity of the top
boundary will be explored.
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